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A decoupled homogenization methodology for anisotropic hyperelastic media

This study focusing on performing nonlinear two-scale analysis on composite materials
possessing a periodic microstructure, The proposed strategy is based on the assumption that
a functional form of the macroscopic constitutive equation is available. To reduce the
computational costs to solve a two-scale boundary value problem without losing the
distinctive characteristics of the coupled methods, a micro-macro decoupling scheme
proposed by Terada et AL [1,2] is employed. This involves conducting a series of numerical
material tests (NMTs) on the Representative Volume Element to perform data acquisition, A
tensor-based method of parameter identification with the "measured" data in the NMTs is
used for identifying the material parameters in the assumed anisotropic hyperelastic
constitutive model equation. Once the macro-scale material behavior is successfully fitted
with the identified parameters, macro-scale analysis can be performed.

 Fiber-reinforced rubber-like composites can be physically represented as a pliable matrix material with
aligned cylindrical stiffer fiber inclusions.

The homogenization technique relies on the research introduced by Terada et al. [1] and
involves a step-by-step approach that includes:
 Choosing an anisotropic hyperelastic macroscopic constitutive law (Homogenized Potential).

 Performing numerical simulations on a representative heterogeneous volume element (RVE)
consisting of a composite materials( matrix / fibers ):
 Choosing a random subset of macroscopic displacement gradient H (Type and Intensity).

 Computing the second Piola-Kirchhoff stress tensor (Sheter) by solving the corresponding
boundary value problem through integration over the heterogeneous RVE with periodic
boundary conditions(PBC).
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 Macroscopic coefficient identification for the chosen homogenized potential :
 Express the second Piola-Kirchhoff stress tensor as a function of the chosen homogenized

potential and material coefficients p[k] :
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are the derivatives of the different terms in the potential,

 Identify the macroscopic coefficients using a least squares optimization method:
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 Calculate the local error of the RVEs between 𝑺𝒉𝒐𝒎𝒐  and 𝑺𝒉𝒆𝒕𝒆𝒓 to evaluate the capability of the
theoretical potential to closely approximate the RVE behaviour .

Fiber/Matrix constitutive model: NeoHookean (Slightly compressible case)

With

Theoretical Homogenized Potential: (Slightly compressible case)

Error between the numerical and analytical coefficients 𝝁𝒏 𝒂𝒏𝒅 𝝁𝒉𝒔 𝒂𝒏𝒅  𝝁𝒊𝒉 for a Poisson coefficient ν = 0.49 
and for a contrast C ∈ [1, 105]

 Validation of the homogenization method in the NeoHookean case 

 Local Error : slightly compressible hyperelastic model

Local error of Kaliske’s transverse isotropic law with respect to the deformation % and Four different contrasts

 The Neo-Hookean hyperelastic potential where the homogenized law is already established In
the case of incompressible materials was utilized to confirm the effectiveness of the proposed
technique.

 The proposed method Manifest a strong performance in terms of local error by employing An
isotropic hyperelasticity model for the constitutive model of the microstructures, while an
orthotropic one is assumed to represent the macroscopic material behavior.

 Propose a numerical homogenization strategy aiming for the best possible compromise in terms
of computational cost and reliability while considering the distinct tension-compression behaviors
of fibers .

Theoretical Homogenized Potential: (Slightly compressible case)

Fiber/Matrix constitutive model: 

• Matrix: Mooney Rivlin

• Fiber: Saint Venant Kirchhoff
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(a)Micro-macro iterative couplingmethod
(b)Micro-macro iterative decoupling method
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 The macro model and the micro-macro approaches (Coupled Method) present challenges due to
their high cost and complex calculations and the Lack of link between model parameters and physical
microstructure .

 The decoupled methodology synergistically combines micro-mechanical and macro-mechanical
phenomenological approaches, mitigating their respective limitations while leveraging their
benefits.


